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Abstract

In this paper we present a new numerical technique for computing the unstable eigenfunctions of a saddle periodic

orbit in a delay differential equation. This is used to obtain the necessary starting data for an established algorithm for

computing one-dimensional (1D) unstable manifolds of an associated saddle fixed point of a suitable Poincar�e map. To

illustrate our method, we investigate an intermittent transition to chaos in a delay system describing a semiconductor

laser subject to phase-conjugate feedback.
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1. Introduction

Numerical tools for the study of delay differential equations (DDEs) are of much interest to applied
fields because models featuring a delay term appear in applications ranging from chemistry [8] and biology

[1,26] to laser physics [21,28]. Until quite recently, the only techniques available to study DDEs were

simulation by direct numerical integration of the DDE, or a linear stability analysis of steady states. This is

now changing with the introduction of new tools for the numerical bifurcation analysis of DDEs. At the

fore of this new software is the continuation package DDE-BIFTOOL [7] allowing the user to find and

follow steady states and periodic solutions in systems of DDEs irrespective of their stability; first examples

of continuation studies with DDE-BIFTOOL can be found in [5,13–17,27].
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In [20] we introduced the first method for computing one-dimensional (1D) unstable manifolds of a

saddle periodic orbit of a DDE with one unstable Floquet multiplier. Specifically, we compute each of the

two branches of the unstable manifold W uðqÞ of a saddle fixed point q of a suitable Poincar�e map. This
method requires as starting data the saddle point q and two first points q�d (one on each branch) ap-

proximately on W uðqÞ close to q. Using linear approximation near q, the points q�d can be chosen some

distance d away from q along the unstable eigenspace EuðqÞ. The saddle periodic orbit q can readily be

found with DDE-BIFTOOL. However, for a DDE finding a good approximation of the first points q�d is

more difficult. This is the subject of this paper.

In [20] we used an iterative power method to find a vector v approximately spanning the linear unstable

eigenspace EuðqÞ. This approach was also used in the detailed study of [15] for a DDE describing a

semiconductor laser subject to phase-conjugate feedback (PCF), the example also used here and fully in-
troduced in Section 4. The power method works in the examples in [15,20]. By computing the invariant

torus on which the dynamics of the PCF laser are locked, we were able to show that there is a transition to

chaos culminating in a crisis bifurcation [15]. However, this iterative power method has its shortcomings;

see Section 3 for details. In particular, we found that we were unable to compute both branches of the

unstable manifold near bifurcations of the saddle periodic orbit, and in particular, close to some regions of

chaotic dynamics.

This realisation motivated the present paper. We present here a method for obtaining the entire starting

data for a manifold computation directly from a DDE-BIFTOOL computation. Specifically, we modified
DDE-BIFTOOL to produce the unstable eigenfunction associated with a single unstable Floquet multi-

plier, this data is then used to find the points q�d . This is less straightforward than it sounds owing to the

infinite phase space of the DDE, and it requires several steps to get from the �raw data� of DDE-BIFTOOL

to a suitable representation of q�d .
To illustrate our technique we consider a sudden transition to chaos in the PCF laser caused by a saddle-

node bifurcation of periodic orbits. In [19] this transition was found and identified by simulation and in [15]

continuation techniques were used to follow periodic orbits to the saddle-node bifurcation. It appeared that

the sudden transition to chaos is an intermittent transition [11,25], characterised by the saddle-node bi-
furcation taking place �on a chaotic attractor�. By this we mean that one branch of the 1D unstable

manifold of the saddle resembles the chaotic attractor that existed before the saddle-node bifurcation. Here

we confirm the presence of an intermittent transition in a DDE for the first time by computing the unstable

manifold of the saddle periodic orbit when this bifurcation is approached. This is only possible because we

can now find much better starting data for the 1D manifold algorithm.

The paper is organised as follows. In Section 2 we introduce some background on the theory of DDEs.

In Section 3 we explain how we find the starting data. Specifically, in Section 3.1 we detail how DDE-

BIFTOOL is used to compute unstable eigenfunctions and in Section 3.2 we show how this eigenfunction
data is manipulated to obtain the starting data for a manifold computation. As an illustration we show in

Section 4 an intermittent transition to chaos in the PCF laser. Finally, we draw conclusions and discuss

future work in Section 5.
2. Delay differential equations

We now briefly recall some basic facts on the theory of DDEs; see [3,18,29] for further details. Readers
may find it useful to look ahead to the concrete example of the PCF laser, system (12) in Section 4. We

consider the simplest case, namely an autonomous DDE with a single fixed delay. It has the general form

dxðtÞ
dt

¼ F ðxðtÞ; xðt � sÞ; kÞ; ð1Þ
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where F : Rn � Rn � Rp ! Rn is differentiable and s 2 R>0 is a fixed delay, while k 2 Rp is a multi-

parameter.

We call Rn the physical space of the system. The phase space of (1) is the infinite-dimensional space of
continuous functions C defined on the interval ½�s; 0� with values in Rn. A point, say q 2 C, lives in this

infinite-dimensional phase space, that is, q is a continuous function

q : ½�s; 0� ! Rn: ð2Þ

We call qð0Þ the headpoint of q and qj½�s;0Þ ¼ fqðtÞ j t 2 ½�s; 0Þg its history.

The evolution of a point q 2 C after time tP 0 is given by the evolution operator

Ut : C ! C: ð3Þ

This is formally given by an abstract differential equation on the infinite-dimensional phase space [4].

A periodic solution CðtÞ of (1) is a solution that repeats itself after some period T > 0, that is,

CðtÞ ¼ Cðt þ TÞ for all t. Each segment q 2 C of C, that is, qðhÞ ¼ Cðt þ hÞ for h 2 ½�s; 0�, is a periodic point

of the evolution operator UT, such that UTðqÞ ¼ q. The periodic orbit C traces out a closed curve in pro-

jection onto the physical space Rn; see already Fig. 2 for a concrete example.

For a prescribed section R � Rn and by denoting CR as the space of points in C with headpoints in R, the
Poincar�e map P is defined as
Fig. 1. Time traces over one period T of the components Ex (a), Ey (b) and N (c) of the saddle periodic orbit C together with Cþ dyl for
d ¼ 3:0, illustrating one branch of the unstable linear eigenspace EuðCÞ.
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P : CR ! CR; q 7!UtqðqÞ; ð4Þ

where tq > 0 is the return time to R. After choosing a section R (locally) transverse to a periodic orbit C, the
point q 2 CR is a fixed point under P (and a periodic point of (1)).

Near q the map P can be defined as the jth return to R for some fixed j, where j counts all intersections of
C with R (of which j� 1 are outside a small neighbourhood of q). We note that it is generally not possible to

define P globally as the jth return map to R for a fixed j, that is, the flow may fail to be transverse and this
changes the number of returns to R. (This is in contrast to periodically forced systems, which do have a

globally defined Poincar�e map in the form of the stroboscopic map of the forcing frequency [2].) Such a

tangency can occur at the start point, an interior point or the end point of the orbit of the flow. We will

encounter such tangencies in Section 4.

The stability of C is given by its Floquet multipliers, which are the solutions of a transcendental eigenvalue

problem given by the linearisation of (1) around C; see Section 3.1. This linearisation is directly connected to

the linearisationDPðqÞ of the Poincar�e map P at the respective fixed point q 2 CR: the Floquet multipliers are

the eigenvalues ofDP ðqÞ. We remark that the only exception to this is the so-called �trivial� Floquet multiplier
at +1 of C, which is always present and corresponds to the tangent direction to C, but does not appear as an
eigenvalue of DP ðqÞ. It is a crucial property of DDEs (with fixed delay) that DPðqÞ is a compact operator,
Fig. 2. The saddle periodic orbit C from Fig. 1 together with Cþ dyl in panels (a) and (b), and with C� dyl in panels (c) and (d), all for

d ¼ 3:0; shown in projection onto ðE;NÞ-space and E-space, respectively. Also shown are the points q�d for d ¼ 3:0.
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which implies that its spectrum consists of countably many eigenvalues (the Floquet multipliers) with the

origin of the complex plane as their only possible accumulation point; see [18,29] for more details. In other

words, for any fixed r > 0 there are only a finite number of Floquet multipliers outside a circle of radius r, so
that there are always only a finite number of unstable eigendirections (associated with Floquet multipliers

outside the unit circle). A periodic orbit is called hyperbolic if there are no Floquetmultipliers on the unit circle

(except for the trivial multiplier). A hyperbolic periodic orbit is either stable if all the Floquet multipliers are

inside the unit circle or of saddle type with finitely many unstable eigendirections.

If there are other Floquet multipliers (in addition to the trivial multiplier at +1) on the unit circle then

the system is undergoing a bifurcation. In this study we will encounter a saddle-node bifurcation of limit

cycles which is associated with a real Floquet multiplier crossing the unit circle at +1.

In what follows, we are interested in the one-dimensional unstable manifold W uðqÞ of a saddle point
q 2 CR associated with a periodic orbit C, with exactly one unstable Floquet multiplier. W uðqÞ is the set of
all points p 2 CR that can be iterated backwards under P and are such that P lðpÞ ! q as l ! �1. At q the

unstable manifold W uðqÞ is tangent to the linear eigenspace EuðqÞ spanned by the unstable eigenfunction. In

projection onto the physical space Rn, the 1D linear eigenspace EuðqÞ forms a one-parameter family of

directions along (the history of) q; see already Figs. 1 and 2.

In projection onto the physical space Rn a 1D unstable manifold W uðqÞ forms a complicated object.

However, its trace W uðqÞ \ R is a 1D curve that is smooth (except possibly at isolated points due to the

projection). It can be interpreted in much the same way as a 1D unstable manifold of a fixed point of a
planar map. We remark that, as an artifact of the projection, the trace may have self-intersections (re-

minding one of the fact that W uðqÞ lives in an infinite-dimensional phase space).
3. Unstable eigenfunctions and manifold computations

The method presented in [20] for computing 1D unstable manifolds of saddle periodic orbits in DDEs

was developed from that in [22] for maps. It grows the manifold as a sequence of points fpkg, which are all
in CR, where we use linear approximation between neighbouring points. The distance between these points

is governed by the curvature of the trace of the manifold, which is given by the sequence fpkð0Þg of

headpoints. (Because the distance between pkð0Þ and pkþ1ð0Þ goes to zero with the prescribed accuracy

parameters and the local interpolation error between pkðtÞ and pkþ1ðtÞ depends continuously on t, the
overall interpolation error is bounded; see [20] for details. Alternatively, one could check the curvature

pointwise between three consecutive points for all points along the history array and consider the maxi-

mum. However, this is computationally more expensive and presently not implemented.)

Supposing that the manifold has been computed up to the point pk, the idea is to find the next point pkþ1

such that the headpoint pkþ1ð0Þ is a distance Dk from the headpoint pkð0Þ. This is done by finding a pre-

image p̂ of the point pkþ1 which lies on the computed part of the manifold. By identifying the two points pl
and plþ1 between which p̂ must lie, p̂ is found by bisection. To reduce the number of bisection steps, a small

tolerance e is allowed, meaning that we only require that

ð1� eÞDk < jP ðp̂ð0ÞÞ � pkð0Þj < ð1þ eÞDk: ð5Þ

The distance Dk is adapted during computations according to the curvature of the trace as pre-specified by

four accuracy parameters; introduced fully in [20]. A computation stops after a prescribed arclength of the

trace has been reached, or when Dk falls below a pre-specified small value, thus detecting convergence to an
attracting fixed point.

The starting data needed for a manifold computation is a saddle fixed point q 2 CR of the Poincar�e map

and two points along W uðqÞ, one on each of the two branches of W uðqÞ. We work here with the linear

approximation to W uðqÞ near q and need to find points q�d 2 CR at a distance d from q along the linear



K. Green et al. / Journal of Computational Physics 197 (2004) 86–98 91
unstable eigenspace EuðqÞ. In particular, this means that q�d ð0Þ 2 R. The question is: how can one find q�d
numerically?

Naively, any initial condition near to the point q could be used as starting data to compute one branch of
the unstable manifold. This is due to the �forgiving nature� of the problem, that is, for a saddle fixed point q
with one unstable Floquet multiplier the unstable manifold is locally attracting. However, in general we

need to find both branches of the unstable manifold which lie on either side of the infinite-dimensional

stable manifold, an object which we cannot compute. In [20], motivated by the ordinary differential

equation case, we used an iterative power method to find a vector v 2 CR approximately spanning EuðqÞ.
Specifically, in the power method we choose a starting point close to q and perform a small number of

iterations of the Poincar�e map. The resulting point v is then normalised so that jvðtÞj ¼ 1 for all t 2 ½�s; 0�.
As starting data we used q and q� dv. This works quite well and one obtains starting data for both
branches of the unstable manifold W uðqÞ when the system is not too close to a bifurcation of the saddle

point q, as was the case for the examples in [15,20].

However, the vector v does not span EuðqÞ. First of all, the magnitude of the eigenfunction spanning

EuðqÞ varies along C, while for the iterative approximation v it is constant; see already Fig. 1. Second, vð0Þ
lies in R, but in general, EuðqÞ has a component pointing out of the section R; see already Fig. 2. As a result,

the typical problem arises that both qðtÞ þ dvðtÞ and qðtÞ � dvðtÞ lie on the same side of the stable manifold

even for very small d, so that only one branch of W uðqÞ can be computed.

The shortcomings of the vector v obtained by the power method motivated the work in this paper. We
now explain how reliable starting data for a 1D manifold computation can be found in the form of the two

first points q�d along EuðqÞ as defined above. This guarantees that we find both branches of the unstable

manifold. To this end, we directly compute the eigenvectors of the characteristic matrix with the package

DDE-BIFTOOL. As this matrix is already available in DDE-BIFTOOL, the extra computational cost is

negligible. Furthermore, using DDE-BIFTOOL to obtain all starting data allows us to combine this with

the manifold computation in a convenient way inside the Matlab environment [13].
3.1. Approximating the unstable eigendirection

In order to compute the unstable eigenfunction of the Poincar�e operator DPðqÞ corresponding to a

periodic solution C we consider the linearisation of (1) around C, given by

dyðtÞ
dt

¼ AðtÞyðtÞ þ BðtÞyðt � sÞ; ð6Þ

where we have omitted the dependency on k (which is considered to be fixed in this section). The periodic

coefficients A, B are defined as (writing F � F ðx1; x2; kÞ)

AðtÞ ¼ oF
ox1

����
ðCðtÞ;Cðt�sÞ;kÞ

and BðtÞ ¼ oF
ox2

����
ðCðtÞ;Cðt�sÞ;kÞ

: ð7Þ

The evolution operator of the linearisation (6) is given by

DUt : C ! C: ð8Þ

The eigenvalues of DUT, where T is the period of C, are the Floquet multipliers l of the periodic solution.
The operator DUT has only a point spectrum (except possibly for the eigenvalue zero). Hence, for each

l 6¼ 0 there exists a corresponding eigenfunction segment ql 2 C, such that,

DUTql ¼ lql: ð9Þ
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Moreover, it follows that ql is an eigenfunction segment of a trajectory yl which repeats itself after time T
scaled by the factor l,

ylðt þ TÞ ¼ lylðtÞ for all t: ð10Þ

We briefly sketch how the flow (6), and correspondingly the operator DUT, is approximated within the

package DDE-BIFTOOL; see [6] for details. The periodic solution C itself is approximated by a piecewise

polynomial solution (of Lagrange polynomials) over a finite mesh. The DDE is satisfied at the so-called

collocation points, yielding collocation equations for the coefficients of the polynomials. The collocation

equations are used to obtain a discrete mapping (a matrixM) of the approximation on the function segment

½�s=T; 0� to the approximation on the function segment ½1� s=T; 1� (notice the scaling of time). The ei-

genvalues of this matrix M are then computed and they approximate the Floquet multipliers; the con-

vergence of the multiplier approximations was investigated in [24]. Likewise, the eigenvectors of M are
discrete approximations of the eigenfunction segments ql on ½�s; 0�. Once an approximation is known on

½�s=T; 0�, these eigenfunction segments are expanded using the collocation equations. In this way, we

obtain an approximation of yl on ½�T; 0�. Except for the time dependency in (6), this scheme is completely

equivalent to the collocation equations used for obtaining the periodic solution C itself. Note that this

eigenfunction approximation is not periodic on ½�T; 0�, a fact that we will revisit in Section 3.2.

Since the collocation mesh used in (6) for obtaining the approximate eigendirections is exactly the same

as the one used for obtaining C, approximations of C at the mesh points used in the discretisation of (6) are

readily available. We remark that refining the mesh for computing the eigendirection compared to the mesh
for obtaining C does not appear to be sensible, because the overall accuracy is limited in any case by the

accuracy of the approximation obtained for C.
The above scheme is now fully implemented as part of DDE-BIFTOOL. For a given Floquet multiplier

l the user has access to the eigenfunction yl over the period interval ½�T; 0� of C. This is useful in several

situations, for example, when switching between branches of periodic orbits at bifurcation points and in-

deed to generate starting data for 1D unstable manifold computations. We note that this approach cal-

culates all eigenfunctions corresponding to all Floquet multipliers with real part greater than a user defined

value. However, in the case of computing 1D unstable manifolds we only consider one unstable Floquet
multiplier and its associated eigenfunction.
3.2. Constructing q�d

We find starting data for the computation of 1D unstable manifolds of a saddle periodic orbit C with one

unstable Floquet multiplier as follows. First, DDE-BIFTOOL is used to obtain data for C such that it is

given as a function over the period interval ½�T; 0�. It is possible to ensure that the headpoint Cð0Þ lies in the

section R by specifying this as an extra condition when computing and correcting the orbit with DDE-

BIFTOOL. (Note that this is slightly different from the approach taken in [20] where interpolation was used

to obtain an orbit C with head point in R.) We then use the new functionality of DDE-BIFTOOL to find

the unstable eigentrajectory yl as detailed in the previous section. C and yl represented in this way con-

stitute the �raw data� we need.
While the arguments that follow are valid for any generic physical space X and section R, we illustrate

our method with specific data in Figs. 1 and 2 of the PCF laser introduced in more detail in Section 4 below.

For orientation we already mention that this system has the three-dimensional ðE;NÞ-space as its physical
space, where E ¼ Ex þ iEy is a complex variable and N is real. The section is chosen as R � fðE;NÞ jEx ¼ 0g.

Fig. 1 shows the �raw data�, namely a saddle periodic orbit C of the PCF laser with one unstable Floquet

multiplier l, together with the associated unstable eigendirection EuðCÞ given by ðCþ dylÞðtÞ. (In the figure

we use the value of d ¼ 3:0 and plot the three components Ex, Ey and N separately.) The length of the vector
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ðCþ dylÞð0Þ at Cð0Þ is approximately l ¼ 3:14897 times that of ðCþ dylÞð�TÞ at Cð�TÞ, illustrating that

the Floquet multiplier l measures the linear expansion over one period T. Notice that CExð0Þ ¼ 0, which

means that C indeed lies in the section R.
Fig. 2(a) and (b) show the same �raw data� as Fig. 1, but now plotted in two projections onto the physical

space; namely ðE;NÞ-space and the E-plane, respectively. Similarly, Fig. 2(c) and (d) show the respective

data C� dyl for d ¼ 3:0, that is, the �other side� of EuðCÞ. Also plotted in bold are the points qþd and q�d that

we are seeking, whose headpoints lie in R. It is immediately apparent from this figure, that

q�d 6¼ q� dql; ð11Þ

where q is the fixed point associated with C and ql the respective eigenfunction, both over the interval

½�s; 0�.
The desired points qþd and q�d can be extracted from the raw data as follows. In the first case, sketched in

Fig. 2(a) and (b), the vector ylð0Þ points in the same direction as the flow. This means that the point

ðCþ dylÞð0Þ lies past the section R. In this situation, the desired point qþd can be found by moving back-

wards (by decreasing t) along the data Cþ dyl and finding the (first) intersection point of this data with R
by interpolation. This point is by definition qþd ð0Þ and the data segment of length s before this point is qþd .

The second case is shown in Fig. 2(c) and (d). Here ðC� dylÞð0Þ points in the opposite direction to the

flow, so that ðC� dylÞð0Þ lies before the section R. In this situation, the desired point q�d must be found by

moving forward, that is, by increasing t. The problem is that C� dyl is only known in the time interval
½�T; 0�. To obtain data for t > 0 we extend the data for C simply by periodicity. However, the data for yl is
not periodic, owing to the expansion given by the Floquet multiplier l. Nevertheless, we can extend the

data for yl by periodicity if we multiply by l at the same time, hence, using the scaling (10). Once the data

has been extended in this way, we move forward in the data, find the intersection point q�d ð0Þ with R by

interpolation and obtain q�d as the data segment of length s before this point.

This procedure is now fully implemented in Matlab [12], so that it is integrated with the DDE-BIFTOOL

routines. As output we write out both q and q�d for a d that was specified by the user. This output forms the

starting data as needed by the 1D manifold algorithm introduced in [20].
The fact that the vector qlð0Þ generically points out of the section R has the consequence that the in-

tersection of the linear space EuðCÞ with the plane R is not a straight line. The two branches of this in-

tersection curve are given by the parametrised families fq�d ð0Þ jd 2 RP 0g, which is shown in Fig. 3. Also

shown is part of the global 1D unstable manifold W u computed using our algorithm with an initial distance
Fig. 3. Unstable linear eigenspace EuðqÞ as parametrised by fq�d ð0Þ jd 2 RP 0g, together with the unstable manifold W uðqÞ as computed

with our algorithm (for an initial distance of d ¼ 0:001); individual dots are for the stated values of d.
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of d ¼ 0:001. It is clear that EuðCÞ \ R is indeed not a straight line, but a curve that is tangent to W u at q.
(Note that at q, EuðqÞ is tangent to W uðqÞ not only at qð0Þ but also along the entire history of q.) Notice

that, for large values of d, the linear space EuðCÞ is a very bad approximation to the 1D unstable manifold
W u; see Fig. 3(b). It is therefore very important to choose d small enough when starting a manifold

computation. In Figs. 1 and 2 we chose d ¼ 3:0 purely for illustrative purposes. Fig. 3(b) shows that an

initial distance of d ¼ 3:0 along EuðCÞ would give very bad starting data for computing the manifold W uðCÞ.
4. Example: Phase-conjugate feedback laser

For illustration we consider the technologically relevant example of a DDE describing a PCF laser
[9,10,19]. This system can be modelled by the DDEs

dEðtÞ
dt

¼ 1

2

�
� iaGN ðNðtÞ � NsolÞ þ GðtÞ

�
� 1

sp

��
EðtÞ þ jE�ðt � sÞ;

ð12Þ
dNðtÞ
dt

¼ I
q
� NðtÞ

se
� GðtÞjEðtÞj2;

describing the evolution of the complex electric field EðtÞ ¼ ExðtÞ þ iEyðtÞ and the population inversion
NðtÞ. Nonlinear gain is included in the term GðtÞ ¼ GN ðNðtÞ � N0Þð1� �PðtÞÞ where � ¼ 3:57� 10�8 is the

nonlinear gain coefficient and PðtÞ ¼ jEðtÞj2 is the intensity. All other parameters are set to realistic values

corresponding to a Ga–Al–As semiconductor laser and are given in [13–16,19,20]. The phase-conjugate

feedback term involves the feedback rate j and the external cavity round-trip time s, which we fix at the

value of s ¼ 2=3 ns, corresponding to an external cavity length Lext � 10 cm. We consider changes in the

dynamics of the PCF laser as the dimensionless parameter js is varied. Finally, we note that (12) has Z2-

symmetry given by the transformation ðE;NÞ ! ð�E;NÞ. Consequently, every invariant set is either

symmetric or has a symmetric counterpart under this symmetry.

4.1. General dynamics of the PCF laser

In [19] it was shown that the general picture of the dynamics of the PCF laser is that of stable periodic

operation interspersed with �bubbles� of more complicated, for the most part, chaotic dynamics. One refers

to these stable periodic orbits as external cavity modes (ECMs) of the PCF laser [13]. The bubbles of

chaotic dynamics are the result of competition between ECMs.

The transitions between ECMs and the regions of chaos may be very sudden. One such transition was
studied in [15] where the transition at the start of the second bubble of chaos, from a locked periodic

solution to a chaotic solution, was shown to be due to the break-up of a torus culminating in a crisis bi-

furcation. This study employed manifold computations to identify the shape of the underlying torus as one

passes through the region of locking before the crisis bifurcation and the ensuing chaotic dynamics. (Note

that the iterative power method worked for all examples in [20], meaning that we were able to compute both

branches of the unstable manifold in each case.)

The bifurcation diagram in Fig. 4(a) shows the first bubble of chaos in the PCF laser. It was obtained by

simulation, where we plot, after transients have died down, a normalised inversion N̂ whenever the power
P ðtÞ ¼ jEðtÞj2 crosses its average value; compare [15,19]. Fig. 4(a) reveals a steady state locked solution for

js < 0:75. Physically this corresponds to a frequency match between the solitary laser and the phase-

conjugating mirror; see [13,14,16] for detailed studies of this locked solution. A periodic solution then

appears which is seen to undergo a period-doubling route to the first bubble of chaos. One then observes a

sudden transition to the first ECM solution at js � 1:86.



Fig. 4. Bifurcation diagrams of the PCF laser obtained by simulation.
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An enlargement of the bifurcation diagram near this transition is shown in Fig. 4(b). Note that there is

no hysteresis in this transition, so that when decreasing js one sees a sudden jump from periodic output to

chaos. Fig. 4(b) reveals that the curve of stable periodic solutions has a quadratic tangency with the chaotic

region, which is typical for a saddle-node bifurcation of periodic orbits. This phenomenon was already

found in [19] at the end of the second bubble of chaos, where it was identified as an intermittent transition

(or a saddle-node bifurcation of periodic orbits that takes place on a chaotic attractor). The saddle-node

bifurcation itself was found in [13] by a continuation study of the periodic solutions of the PCF laser.

4.2. Intermittent transition to chaos

Here we use manifold computations to show that the sudden transition to periodic operation at the end

of the first bubble of chaos is indeed due to an intermittent transition. Specifically, we compute the unstable

manifold associated with the saddle periodic solution born in the saddle-node bifurcation of periodic orbits.

Due to the closeness of the bifurcation one needs good starting data. In fact, the examples presented in this

paper could not be computed with the iterative power method, that is, we could only find one of the

branches of the unstable manifold. However, the method presented in Section 3 does indeed allow us to
compute both branches of all relevant manifolds.

Fig. 5 shows the trace in the section R defined by Ex ¼ 0 of the unstable manifold W uðqÞ of the saddle

fixed point q for four values of js as one moves away from the saddle-node bifurcation at js � 1:86027.
The horizontal cross ðþÞ indicates the point qð0Þ, while the intersection of the bifurcating stable periodic

solution with R is marked by a diagonal cross ð�Þ. In each computation, an initial step q�d for d ¼ 0:001
along EuðqÞ was used. Other accuracy parameters, detailed in [20], were set to amin ¼ 0:2, amax ¼ 0:3,
ðDaÞmin ¼ 5:0� 10�4, ðDaÞmax ¼ 5:0� 10�3, Dmin ¼ 5:0� 10�2 and e ¼ 0:2.

Fig. 5(a) shows the unstable manifold for js � 1:86036, closest to the saddle-node bifurcation. Here we
see that the short branch converges quickly to the stable periodic solution ð�Þ. The other branch, on the

other hand, is very long and makes very large excursions, where it follows the previous chaotic attractor. To

illustrate this, we show the intersection of this chaotic attractor with R as a cloud of grey dots. (Note that

for the used values of js, past the bifurcation at js � 1:86027, the chaotic attractor does not exist any

longer; it is plotted strictly for illustration and is the same in all panels of Fig. 5.) As one moves away from

the transition, the short branch grows in length but always converges to the stable periodic solution, as is

expected near a saddle-node bifurcation. The long branch does not change so much, and principally follows
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the old chaotic attractor; see Fig. 5(b)–(d). This shows that we are indeed dealing with an intermittent

transition: as one moves away from the bifurcation point, the saddle periodic orbit and the stable periodic

orbit get further apart; while at the transition the periodic orbits disappear and the long branch of the
unstable manifold forms the chaotic attractor.

The reader will notice a �gap� in the upper right of the unstable manifold shown in Fig. 5(a)–(c). This gap

shortens as js is increased and finally closes in Fig. 5(d). As was described in [20], it is due to the orbit of the

flow becoming tangent to the section R. The tangencies are detected by monitoring the integration time

used in computing previous points on the manifold. If this tangency occurs at an interior point of the flow,

our algorithm changes the number of returns of the Poincar�e map to R and the computation continues. If

the tangency occurs at the end point of the orbit of the flow an integration time constraint causes the

manifold computation to stop. The gaps in the manifolds of Fig. 5(a)–(c) are due to a tangency at an end
point. However, by specifying a large enough time constraint, the algorithm continues to search for new

images in R of the previously computed part of the manifold and resumes computing the manifold. If this is

the case, condition (5) is ignored, resulting in a gap in the manifold. In this situation it is possible that the
Fig. 5. Both branches of the 1D unstable manifold of the saddle point (+), the short branch converges to the attractor ð�Þ, and the

other branch to the chaotic attractor (grey) that exists before the crisis. From (a) to (d) js takes the values 1.86036, 1.86238, 1.87774
and 1.89159.
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algorithm may have switched to another branch of the manifold. Therefore, it is important to check that

the correct branch is being followed. We do this in two ways. Firstly, we check that the discontinuous

branches indeed match up exactly, as in Fig. 5(d), as the parameter is changed. Secondly, we monitor the
orbit itself in phase-space and detect its tangency. In the computations of Fig. 5 we allowed for a difference

in integration times between consecutive mesh points on the manifold of at most 20%.
5. Conclusions

We used the continuation package DDE-BIFTOOL to compute unstable eigenfunctions of saddle pe-

riodic orbits. We believe this to be the first time that this was done for DDEs. From these eigenfunctions we
then constructed reliable starting data for 1D unstable manifold computations. This allows us to perform

manifold computations in situations where the iterative power method we used previously in [15,20] ran

into difficulty. As an example, we investigated a sudden transition to chaos in a semiconductor laser subject

to phase-conjugate feedback and were able to show that this transition was due to a saddle-node bifur-

cation of limit cycles taking place on the chaotic attractor, known as an intermittent transition.

We expect that the study of global dynamics and bifurcations in DDEs arising in applications will be a

topic of much interest in the coming years. The algorithm for computing 1D unstable manifolds constitutes

a valuable new tool. It is now integrated with DDE-BIFTOOL inside the Matlab environment [12].
The approach taken here to generate starting data can be generalised to the case of more unstable ei-

genfunctions. The next challenging step is to generalise the algorithm in [23] to compute 2D unstable

manifolds of equilibria and saddle periodic orbits in DDEs.
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